From: Mike O'Donnell

To: Microsoft ATR
Date: 1/23/02 7:10pm
Subject: Microsoft Settlement

[Text body exceeds maximum size of message body (8192 bytes). It has been converted to attachment. ]

MTC-00019224 0001



Renata B. Hesse

Antitrust Division

U.S. Department of Justice
001 D Street NW

Suite 1200

Washington, DC 20530-0001

Dear Ms. Hesse:

I would like to comment on the proposed Final Judgment in United
States v. Microsoft, as provided in the Tunney Act.

I find that the proposed judgment is insufficient by a large margin to
restore healthy competition in the computer operating systems and
software application markets, so it is not in the public interest and
should not be affirmed by the court.

The proposed Final Judgment attempts to remedy Microsoft's established
illegal anticompetitive practices by prohibiting particular forms of
conduct involving overly restrictive licensing terms, terms that vary

in order to reward those who accept and punish those who contest a
Microsoft monopoly, and terms that make switching to competing
products more difficult or more costly. It also prohibits certain

forms of retaliation against OEMs who support products competing with
Microsoft's products. It also requires Microsoft to disclose APIs and
communication protocols for its products under certain circumstances
and for certain purposes.

It is inherently difficult, and perhaps impossible, to remedy
Microsoft's particular forms of illegal anticompetitive behavior
through conduct remedies. Both the underlying concepts in which
conduct remedies are defined, and the particular anticompetitive
techniques used by Microsoft change far too rapidly, and Microsoft
itself has far too much influence on those changes, for them to serve
in the foundation of effective conduct remedies.

The remedies in the proposed judgment refer to concepts of "APL"
"operating system," "middleware," "application," "platform software,"
"top-level window," "interface elements,” "icons," "shortcuts,” "menu
entries." The definitions of these concepts are not robust and

timeless. Compared to concepts in other branches of business and
engineering they are relatively ephemeral, controversial, dependent on
rapidly changing technological context, and subject to deliberate
manipulation by Microsoft. For example, an "operating system" in the
1960s was a software system to organize the basic functionality of a
computer, and it contained little or no user interface code. In the
1970s "operating systems" often contained substantial collections of

utility applications and rudimentary interactive user interfaces

nn "o

MTC-00019224_0002



called "shells." In the 1980s, the X Window system was created as a
form of what is now called "middleware" to provide a graphical
interactive user interface, used widely in conjunction with Unix
operating systems. Apple and Microsoft created similar graphical
interactive user interfaces, but defined them to be parts of their
operating systems, rather than additional middleware. In the near
future, distributed and network computing are likely to make it quite
difficult to determine the boundaries of a single operating system. In
the past, Microsoft appears to have deliberately manipulated the
boundaries of such conceptual categories to create and preserve a
monopoly position, and I expect it to continue such practices in the
future. The proposed judgment provides definitions that narrow these
already problematic concepts even further, making them even more
vulnerable to deterioration due to technological change and to
manipulation by Microsoft.

Furthermore, the particular conduct requirements in the proposed
judgment are far too narrow. Every one of the requirements is weak in
some way. For example, consider the requirement to "disclose to ISVs,
IHVs, IAPs, ICPs, and OEMs, for the sole purpose of interoperating
with a Windows Operating System Product, ... the APIs and related
Documentation that are used by Microsoft Middleware to interoperate
with a Windows Operating System Product." Microsoft and other software
vendors like to treat their Applications Product Interfaces (API) as
intellectual property. But in good engineering practice these are key
parts of the warrantable specifications of a product. This holds in
particular for operating systems and middleware, which by their nature
are especially intended for, suitable for, and often useless without
interaction with other software products. APIs define the quality of
that interaction, but they do not provide it. The implementation of an
API in program code (which is naturally protected by trade secret,
copyright, and patent law) provides the quality of interaction

defined by an APL. Without access to the complete API, the licensor of
an operating system cannot employ the system freely in the way that
good software engineering practice suggests. With complete public
access to an API, a software company may still protect its
implementation of the API, which contains the real value that it has
created. Keeping an API secret does not correspond to keeping the
inner workings of a product secret. Rather, it corresponds to keeping
the precise function accomplished by that product secret.

So the public interest calls for the widest possible dissemination of

API documentation. But the proposed judgment explicitly calls for
disclosure of APIs "for the sole purpose of interoperating with a
Windows Operating System Product,” and only the "APIS and related
Documentation that are used by Microsoft Middleware to interoperate
with a Windows Operating System Product.” This excludes the use of
information about the API to provide competitive platforms for running
Windows-compatible software. Keep in mind that Windows-compatible

— - - -

MTC-00019224_0003



software does not necessarily come from Microsoft. Microsoft benefits
from the value added to its operating system products by a large

number of less powerful software houses that create Windows-compatible
software. By holding the Windows operating system API secret,
Microsoft in effect keeps crucial information about other companies’
software applications secret, denying those applications the value

added by competing operating systems on which they may run.

Compare the Windows market (and the preceding DOS market) to the
Unix/Linux/Posix market. Microsoft uses secret and changeable APIs to
effectively eliminate competition to provide alternative operating
systems running Windows applications. A competing operating system
must use different APIs, and therefore cannot support all of the same
applications. By contrast, the Posix standard is a completely public

API for Unix/Linux. Various companies, such as Sun Microsystems,
compete to provide different implementations of the Posix

API. Consumers may run Unix/Linux applications on any of these
operating systems.

Similarly, in the hardware market for processors, the specification of
the x86 instruction set architecture (the hardware analog to a
software API), is public. As a result, AMD competes with Intel to
implement that architecture, with immense benefit to the public
interest. Similar publication of standards in the overall

functionality of personal computers led to the immensely beneficial
competition among makers of IBM-compatible PCs. The failure to
disclose Windows operating system APIs destroys the possibility of
similarly beneficial competition among vendors of operating systems.

Very similar considerations to those raised above for APIs apply to
communication protocols (for which the proposed judgment provides
limited disclosure) and to file formats (not covered in the proposed
judgment). Note that Adobe made full public disclosure of its
PostScript and PDF formats, compared to Microsoft's secrecy regarding
Word formats, and that this disclosure served the public interest
immensely by promoting the wide availability of PostScript and PDF
printers and viewers.

There are many other detailed shortcomings of the proposed Final
Judgment, including the remaining conduct restrictions and the

enforcement methods. I expect that other correspondents will treat
some of them.

Sincerely yours,

Michael J. O'Donnell

Professor in Computer Science and the Physical Sciences Collegiate Division
The University of Chicago

MTC-00019224_0004



Senior Fellow in the Computation Institute of
The University of Chicago and Argonne National Laboratory

MTC-00019224_0005



